Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(4): e1012199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683868

RESUMO

The microsporidian Enterocytozoon hepatopenaei (EHP) is a fungi-related, spore-forming parasite. EHP infection causes growth retardation and size variation in shrimp, resulting in severe economic losses. Studies on shrimp immune response have shown that several antimicrobial peptides (AMPs) were upregulated upon EHP infection. Among those highly upregulated AMPs is c-type lysozyme (LvLyz-c). However, the immune signaling pathway responsible for LvLyz-c production in shrimp as well as its function against the EHP infection are still poorly understood. Here, we characterized major shrimp immune signaling pathways and found that Toll and JAK/STAT pathways were up-regulated upon EHP infection. Knocking down of a Domeless (DOME) receptor in the JAK/STAT pathways resulted in a significant reduction of the LvLyz-c and the elevation of EHP copy number. We further elucidated the function of LvLyz-c by heterologously expressing a recombinant LvLyz-c (rLvLyz-c) in an Escherichia coli. rLvLyz-c exhibited antibacterial activity against several bacteria such as Bacillus subtilis and Vibrio parahaemolyticus. Interestingly, we found an antifungal activity of rLvLyz-c against Candida albican, which led us to further investigate the effects of rLvLyz-c on EHP spores. Incubation of the EHP spores with rLvLyz-c followed by a chitin staining showed that the signals were dramatically decreased in a dose-dependent manner, suggesting that rLvLyz-c possibly digest a chitin coat on the EHP spores. Transmission electron microscopy analysis revealed that an endospore layer, which is composed mainly of chitin, was digested by rLvLyz-c. Lastly, we observed that EHP spores that were treated with rLvLyz-c showed a significant reduction of the spore germination rate. We hypothesize that thinning of the endospore of EHP would result in altered permeability, hence affecting spore germination. This work provides insights into shrimp immune signaling pathways responsible for LvLyz-c production and its anti-EHP property. This knowledge will serve as important foundations for developing EHP control strategies.


Assuntos
Enterocytozoon , Muramidase , Penaeidae , Transdução de Sinais , Animais , Penaeidae/imunologia , Penaeidae/microbiologia , Muramidase/metabolismo , Enterocytozoon/metabolismo , Microsporidiose/imunologia
2.
J Immunol ; 209(3): 582-592, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35858734

RESUMO

Recent studies have initiated a paradigm shift in understanding heat shock protein 70 (HSP70) functions in the shrimp immune system. However, the mechanism by which Litopenaeus vannamei (Lv)HSP70 modulates the innate immune response remains unclear. This study shows that LvHSP70 binds to the pattern recognition receptor LPS and ß-1,3-glucan-binding protein (LvLGBP), and subsequently leads to the activation of the prophenoloxidase system. Injection of shrimp with rLvHSP70 significantly (p < 0.05) upregulated the gene and protein expression of the key pattern recognition receptor LvLGBP. A coimmunoprecipitation and ELISA-based binding assay strongly confirmed the binding of LvHSP70 to LvLGBP at polysaccharide recognition motifs (PLS motifs) with a Kd of 4.44 µM and its competitive binding with LPS (IC50) is 8.036 µM. Conversely, LPS efficiently competed with LvHSP70 for binding to LvLGBP in a concentration-dependent manner with an IC50 of 7.662 µM, indicating that both are ligands of LvLGBP and likely bind at the same site. Binding of LvHSP70 to LvLGBP highly activated phenoloxidase activity in shrimp hemocyte lysate supernatants. Gene silencing of LvLGBP impaired the activation of phenoloxidase activity in shrimp by rLvHSP70, indicating that LvHSP70-LvLGBP interaction was essential for stimulating the immune cascade. Taken together, these results demonstrated that LvHSP70 is a ligand of LvLGBP similar to LPS and acts as a damage-associated molecular pattern to modulate the shrimp immune system via the prophenoloxidase system, eventually leading to the production of melanin and toxic reactive intermediates against invading pathogens.


Assuntos
Lipopolissacarídeos , Penaeidae , Animais , Monofenol Mono-Oxigenase , Proteínas de Choque Térmico HSP70/metabolismo , Imunidade Inata/genética , Receptores de Reconhecimento de Padrão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...